Print Page   |   Contact Us   |   Your Cart   |   Report Abuse   |   Sign In   |   Apply for NAQC Membership
Site Search
Sign up for NAQC membership today!

Receive a monthly issue of Connections!
NAQC Newsroom: Research

Content-Driven Analysis of an Online Community for Smoking Cessation: Integration of Qualitative

Thursday, June 11, 2015  
Posted by: Natalia Gromov
Sahiti Myneni, PhD, MSE, Kayo Fujimoto, PhD, Nathan Cobb, MD, and Trevor Cohen, MBChB, PhD
Content-Driven Analysis of an Online Community for Smoking Cessation: Integration of Qualitative Techniques, Automated Text Analysis, and Affiliation Networks.
American Journal of Public Health. June 2015, Vol 105, No. 6: 1206-1212.
We identified content-specific patterns of network diffusion underlying smoking cessation in the context of online platforms, with the aim of generating targeted intervention strategies. QuitNet is an online social network for smoking cessation. We analyzed 16 492 de-identified peer-to-peer messages from 1423 members, posted between March 1 and April 30, 2007. Our mixed-methods approach comprised qualitative coding, automated text analysis, and affiliation network analysis to identify, visualize, and analyze content-specific communication patterns underlying smoking behavior.
Themes we identified in QuitNet messages included relapse, QuitNetspecific traditions, and cravings. QuitNet members who were exposed to other abstinent members by exchanging content related to interpersonal themes (e.g., social support, traditions, progress) tended to abstain. Themes found in other types of content did not show significant correlation with abstinence. Modeling health-related affiliation networks through content-driven methods can enable the identification of specific content related to higher abstinence rates, which facilitates targeted health promotion.

Sign In

Forgot your password?

Not a NAQC Member?

Latest News

Membership 11 years!.

    3219 E. Camelback Road, #416, Phoenix, AZ 85018 | Ph: 800.398.5489 | Fax: 800.398.5489 | email: